siyaku blog

- 研究の最前線、テクニカルレポート、実験のコツなどを幅広く紹介します。 -

総説

合成・材料 総説

【総説】有機トランジスタの評価法

本記事は、東京大学大学院新領域創成科学研究科物質系専攻 工学部応用化学科 岡本 敏宏准教授に執筆いただいたものです。

これまでの精力的な研究により、有機半導体材料の性能指標であるキャリア移動度(以下、移動度と略す)は、現在実用的に用いられているアモルファスシリコンを超え、10 cm2/Vs以上の移動度が報告されるまでになっている1-3)。この移動度の向上により、実デバイスにおける重要な基本素子である有機電界効果トランジスタ(Organic Field-Effect Transistor, OFET)を用いたディス...

合成・材料 総説

【総説】高分子系半導体−n型

本記事は、東京大学大学院新領域創成科学研究科物質系専攻 工学部応用化学科 岡本 敏宏准教授に執筆いただいたものです。

高分子系n型半導体材料は、低分子系と同様に、p型半導体材料と比較して、開発が遅れている。高分子系n型半導体として図1aに示したCN-PPVは古くから知られている1)。21世紀に入り、高分子系p型有機半導体と同様、n型半導体も研究が活発になったが、p型に比べて、移動度は一桁以上低い値であった。 2003年にJenekheらによって開発されたはしご型(ラダー型)高分子のpoly(benzimidazo...

合成・材料 総説

【総説】高分子系半導体−p型

本記事は、東京大学大学院新領域創成科学研究科物質系専攻 工学部応用化学科 岡本 敏宏准教授に執筆いただいたものです。

高分子半導体材料を用いた研究は、1990年代後半に報告されたpoly(3-alkylthiophene)(ポリ(3-アルキルチオフェン), P3RT)(図1a)が有機電解効果トランジスタ(OFET)で0.1 cm2/Vsの正孔移動度を示したところからスタートしている。X線を用いた構造解析の結果、P3RTは高分子鎖が基板に対して立ったラメラ構造(Edge-on配向)を形成し、基板に対して電荷輸送にか...

培養 ライフサイエンス 総説

【総説】細胞内に発現する miRNA を検知し、目的の細胞を選別する RNA スイッチ™ 技術

本記事は、和光純薬時報 Vol.88 No.1(2020年1月号)において、株式会社 aceRNA Technologies 進 照夫様に執筆いただいたものです。

京都大学 iPS 細胞研究所の齊藤博英教授らが発明した「RNA スイッチ™」技術は、細胞内に存在し、生命現象の様々な作用機序を制御すると言われている miRNA(マイクロ RNA)を検知して、細胞の遺伝子発現を制御することを可能とします。細胞内の miRNA の活性状態を細胞が生きたまま識別できることが大きな特徴の 1 つであり、この技術により判明した細胞種特異的な活性 miRNA に対応する R...

合成・材料 総説

【総説】光塩基発生剤を用いた UV アニオン硬化

本記事は、和光純薬時報 Vol.88 No.1(2020年1月号)において、富士フイルム和光純薬株式会社 機能性材料研究所 酒井 信彦が執筆したものです。

光開始剤は、光照射によってさまざまな活性種が発生する化合物群の総称であり、塗料、インキ、接着剤、フォトレジストなど、さまざまな分野で活用されている。光開始剤は発生する活性種によって、①光ラジカル発生剤、②光酸発生剤、③光塩基発生剤(本稿では Photo Base Generator、以下 PBGと省略)に大別される。これらの活性種を用いた UV 硬化のうち、UV ラジカル硬化と UV カチオン硬化...

キーワード検索

月別アーカイブ

当サイトの文章・画像等の無断転載・複製等を禁止します。