

Photo Base Generators

Index	Introduction ····· P1
	Different Reactions using Bases ···· P2
	Selection Guide ····· P3,4
	WPBG-266 ····· P5-8

•••••	P9-12
•••••	P13-15
•••••	P16
•••••	P17

WPBG-165 ····· P18	
WPBG-027 P19	
PBG Reagent List ······ P20	
List of related Items ······ P21-2	22

FUJIFILM Wako Pure Chemical Corporation

Introduction

We have developed different types of polymerization initiators by establishing novel organic synthetic technologies, manufacturing techniques and refining technologies accumulated through our extensive experience in reagent manufacturing. The photo base generators are used as reaction initiators in the synthesis of polymers. The technology can applied in different areas including coating materials and sealants for electronics equipment.

What is a Photo Base Generator, or PBG?

A Photo base generator is a compound which generates organic base such as amines upon irradiation of light in the UV range.

The generated organic base accelerates an anionic UV curing of epoxy resin, sol-gel method, etc.

Photo base generator

Characteristics of anionic polymerization

- (i) Can be used in air. (No disturbance of curing)
- (ii) Can conduct delay cure.(Anion of active species is not deactivated)
- (iii) Can be used on metal wiring. (Hardly causes metallic corrosion)

Active Species	Example of Reaction	Inhibition	Delay cure	Metallic Corrosion
Radical	$X \bullet \bigcirc $	0 ₂	Non	Non
Cationic		H ₂ O	Yes	Yes
Anionic	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Non	Yes	Non

Typical organic base

Organic bases which are generated by UV irradiation have "nucleophilicity" and "basicity". These bases function as initiators to promote different reactions.

Different reactions utilizing bases

Organic bases are able to initiate different curing reactions by utilizing their nucleophilicity and basicity. Bases are also available for purposes other than curing agents. For example, as a catalyst for depolymerization and neutralizer for acidic systems.

*We do not necessarily line up all the bases described here.

*This chart shows only images, which do not express their accurate physical properties.

Basicity

Selection guide

PBG materials are largely classified into "Ionic type" and "Non-ionic type" by their structure.

- •Ionic-type PBG generates strong organic bases such as tertiary amines, amidines and guanidines. Ionic-type PBG materials are characterized by high reactivity with cross-linking agents and monomers.
- •Non-ionic type PBG materials generate primary and secondary amines and imidazoles, and are characterized by excellent stability and heat resistivity.

lonic-type PBG

	Products	Strong Base	Solubility	Stability	irradiation @365 nm	Sensitizer	Page
Carboxylate	$\begin{array}{c} O & CH_3 \\ CH_3 & CH_3 \\ CD_2 & CH_3 & CH_3 \\ H_3C & HN & CH_3 \\ H_3C & N & HN \\ CH_3 & H_3C & CH_3 \\ H_3C & CH_3 \\ CH_3 & H_3C & CH_3 \\ \end{array}$ WPBG-266	Yes	Yes	Non	Non	Non	P.5-8
Dente	$H_{3}C_{N} H_{N} H_{N}$	Yes	Yes	Yes	Non	Yes	P.9-12
Borate	$F \xrightarrow{F} H_3C \xrightarrow{CH_3} H_3C \xrightarrow{H_3C} H_3C H_$	Yes	Yes	Yes	Non	Yes	P.13-15

Select the most suitable products based on the type of generated base, solubility for resin (and solvent/diluent), stability as pot life, UV absorption wavelength, etc.

Non-ionic-type PBG

	Products	Strong Base	Solubility	Stability	irradiation @365 nm	Sensitizer	Page
	WPBG-018	Non	Yes	Yes	Yes	Non	P.16
Carbamate	WPBG-140	Non	Non	Non	Yes	Non	P.17
	$ \begin{array}{c} $	Non	Yes	Non	Non	Yes	P.18
Amide	O OH WPBG-027	Non	Non	Yes	Yes	Non	P.19

Chemical name 1,2-Diisopropyl-3-[bis(dimethylamino)methylene]guanidium 2-(3-benzoylphenyl)propionate

Immerse pH-test paper in the aqueous solution, irradiate UV, and the transition to the basicity is confirmed visually.

This photo base generator was co-developed with Dr. Koji Arimitsu, Associate Professor, Tokyo University of Science.

Sol-gel method

The Sol-gel method is a technique to form metal oxides by hydrolysis and condensation polymerization of alkoxysilane, etc. It is generally well known that both hydrolysis and condensation polymerization proceed promptly when bases are used.

WPBG-266 is optimal for the curing of the silanol compounds formed by hydrolysis of trisubstituted alkoxysilyl compounds. The silanol compounds formed by hydrolysis of tetrasubstituted alkoxysilyl compounds tend to gel easily, therefore they must be handled carefully.

Example of Use 1

Anionic UV curing of methyl/phenyl silicone resin

KR-300 is a high-temperature-curing-type silanol polymer having methyl and phenyl groups on a silicon atom. Curing temperature can be decreased by using WPBG-266 combined with light exposure.

Conditions -

Composition: 5 parts of WPBG-266, 100 parts of 2-isopropylalkohol and 100 parts of KR-300 (Product of Shin-Etsu Chemical Co., Ltd.) are blended.

Film-forming: Glass plate (i) Spin coat: 500 rpm/5 seconds → 1000 rpm/30 seconds (ii) Pre-bake: 80°C/1 minute

Film thickness: approximately 10 μm

Exposure: Irradiate for 10 seconds (Illuminance: 5 mW/cm² (254 nm), 100 mW/cm² (365 nm), and 261 mW/cm² (405 nm))

Post-exposure bake: 150°C/5 minutes

Results

Solvent resistance of cured film: Acetone, MEK, ethanol, and IPA

Thermogravimetric measurement (200°C): The cured material obtained by the above process: -0.26%

Reference example The cured material obtained by the process of

250°C/60 minutes: -0.34%

Equivalent cured material can be obtained under low temperature and in a short time of period.

Effect of post-exposure baking (PEB):

PEB(℃)	0min	5min	10min	20min	30min	40min	60min	90min
80								
100								
120								
150								

Development by acetone is possible. High contrast is obtained.

Completely cures and is insoluble in solutions of acetone, MEK, etc.

*The above composition is only a reference example, We do not guarantee the physical properties.

Ionic-type

Mechanism of radical generation from WPBG-266.

WPBG-266 is able to generate two different active species a base and a radical by light irradiation. radical with light irradiation.

Hydrolysis using WPBG-266 with ketoprofen (a carboxylic acid which decarboxylates by light irradiation) The hydrolysis of silane coupling agents in the presence of WPBG-266, ketprofen and water will be accelated by the lower pH (acidic conditions). The silanol body thus obtained is not isolated and the system moves to basicity if UV is irradiated as it is. Therefore, cured material can be formed from one component.

Example of Use 2

UV curing using radical polymerization and sol-gel method together (organic and inorganic hybrid)

Conditions

Preparation: Mix 15 parts of WPBG-266, 5 parts of ketoprofen, 245 parts of (3-acryloxy)propyltrimethoxysilane, and 54 parts of water and stir the solution until it becomes homogeneous at the room temperature.

Film-forming: After application with a wire bar, prebake at 80°C/1 minute.

Film thickness: approximately 10-20 μ m

Exposure: Under N₂ flow, irradiate for 30 seconds (Illuminance: 5mW/cm² (254 nm), 100 mW/cm² (365 nm), and 261 mW/cm² (405 nm))

Post-exposure bake: None

Results

Pencil hardness test : 6H or more

Abrasion-resistant test : No scratch with steel wool #0000

Example of Use 3

UV curing using thiol-ene reaction together with the sol-gel method (organic and inorganic hybrid)

Conditions

Preparation: Mix 15 parts of WPBG-266, 5 parts of ketoprofen, 196 parts of (3-mercaptopropyl)trimethoxysilane, and 27 parts of water and stir the solution until it becomes homogeneous at the room temperature. Add 83 parts of 2,4,6-tris(alyloxy)-1,3,5-triazine and 0.3 part of polymerization inhibitor Q-1301 (Product of FUJIFILM Wako Pure Chemical Corporation) and mix.

Film-forming: After application with a wire bar, prebake at 80°C/1 minute.

Film thickness: approximately 10-20 μ m

Exposure: Irradiate for 10 seconds (Illuminance: 5mW/cm² (254 nm), 100 mW/cm² (365 nm), and 261 mW/cm² (405 nm))

Post-exposure baking: None

Results

Pencil hardness test: Glass: 6H or more, Polycarbonate: H

Abrasion-resistant test: No scratch with steel wool #0000

K. Arimitsu, A. Kushima, *et al.*, *Polymer Preprints*, *Japan*, **2005**, 54, 1357.

K. Arimitsu, A. Kushima, R. Endo, J. *Photopolym. Sci. Technol.*, **2009**, 22,663.

K. Arimitsu, R. Endo., Chem. Mater. 2013, 25, 4461-4463.

K. Arimitsu, Journal of Synthetic Organic Chemistry, Japan 2012, 70, 508.

Chemical name 1,2-Dicyclohexyl-4,4,5,5-tetramethylbiguanidium *n*-butyltriphenylborate

Example of Use 1

■Anionic UV curing of epoxy oligomer × polyfunctional thiol

Conditions

Preparation: Mix 1-5 parts of WPBG 300, 0.2-1 part of 2-isopropylthioxanthone (0.2 equivalent amount to WPBG), and 100 parts of jER®828 (epoxy equivalent of 185, Product of Mitsubishi Chemical Corporation), and heat or use a diluent to promote dissolution. Mix 70 parts of KarenzMT®PE1 (SH equivalent of 138.5, Product of Showa Denko K.K.) at room temperature.

Stability of composition as pot life (period in which the viscosity does not exceed the twice of the initial viscosity): 1 month (10°C), 1 week (25°C), and 3 days (40°C)

Exposure: Irradiation for 10 seconds (Illuminance: 5mW/cm² (254 nm), 100 mW/cm² (365 nm), and 261 mW/cm² (405 nm))

Effect of exposure amounts: Post-exposure bake at a fixed temperature of 80°C

100 120

150

PBG 5 parts

	PEB(°C)					80℃				
	value (J/cnl)	Omin	5min	10min	20min	30min	40min	60min	90min	120min
	0.1									
	0.3									
	0.5									
	1									
	2									
	5									
PBG 1 part	10									
	PEB(°C)					80°C				
	value (J/cnl)	Omin	5min	10min	20min	30min	40min	60min	90min	120min
	0.1									
	0.3									
	0.5									
	1									
	2									
	5									
PBG 3 parts	10									
	PEB(°C)					80°C				
	value (J/orf)	Omin	5min	10min	20min	30min	40min	60min	90min	120min
	0.1									
	0.3									
	0.5									
	1									
	2									
	5									
PBG 5 parts	10									

Color	Exposure	Unexposure
	Liquid	Liquid
	Thick	Liquid
	Cured	Liquid
	Cured	Cured

	0.1									
	0.3									
	0.5									
	1									
	2									
	5									
PBG 3 parts	10									
I	PEB(°C)					150℃				
	value (J/cm)	0min	5min	10min	20min	30min	40min	60min	90min	120min
	0.1									
	0.3									
	0.5									
	1									
	2									
	5									
PBG 5 parts	10									
	PEB(°C)					150°C				
	Exposure value (1/cm)	Omin	5min	10min	20min	30min	40min	60min	90min	120min
	0.1	Unin		1011111	2011111	3011111	4011111	0011111	5011111	12011111
	0.1									
	0.5									
	1									
	2									
	- 5									
PBG10 parts	10									
	. 0									

Color	Exposure	Unexposure
	Liquid	Liquid
	Thick	Liquid
	Cured	Liquid
	Cured	Cured

Example of Use 3

Conditions

Preparation: Mix 1-5 parts of WPBG-300 and 0.2-1 part of 2-isopropylthioxanthone (0.2 equivalent amount to WPBG) in 20 parts of γ -butyrolactone and mix hydrogenated bisphenol A type episulphide (episulphide equivalent of 220).

Stability of components as pot life (period in which the viscosity does not exceed the twice of the initial viscosity): 3 weeks (10° C), 2 weeks (25° C), and 3 days (40° C)

Exposure: Irradiation for 10 seconds (Illuminance: 5mW/cm² (254 nm), 100 mW/cm² (365 nm), and 261 mW/cm² (405 nm))

Results -

Post-exposure bake:

	PEB(°C)	Omin	5min	10min	20min	30min	40min	60min	90min	120min
	50									
	80									
	100									
	120									
PBG 1 part	150									
1										
	PEB(℃)	0min	5min	10min	20min	30min	40min	60min	90min	120min
	50									
	80									
	100									
	120									
PBG 3 part	150									
	PEB(°C)	0min	5min	10min	20min	30min	40min	60min	90min	120min
	50									
	80									
	100									
	120									
PBG 5 part	150									

Effect of exposure amounts: Post-exposure bake at a fixed temperature of 80°C

	PEB(°C)					80℃				
	value (J/cm)	0min	5min	10min	20min	30min	40min	60min	90min	120min
	0.1									
	0.3									
	0.5									
	1									
	2									
	5									
PBG 1 part	10									
	PEB(°C)									
	Exposure value (.1/cm)	0min	5min	10min	20min	30min	40min	60min	90min	120min
	0.1									
	0.3									
	0.5									
	1									
	2									
	5									
PBG 3 part	10									
	PEB(°C)					80°C				
	Exposure	Omin	5min	10min	20min	30min	40min	60min	90min	120min
		Onnin	511111	TOTIMI	2011111	3011111	4011111	0011111	5011111	12011111
	0.1									
	0.5									
	1									
	2									
	5									
PBG 5 nart	10									
i bu s part										

Color	Exposure	Unexposure
	Liquid	Liquid
	Thick	Liquid
	Cured	Liquid
	Cured	Cured

Chemical name

ame (Z)-{[Bis(dimethylamino)methylidene]amino}-N-cyclohexyl(cyclohexylamino)methaniminiumtetrakis(3-fluorophenyl)borate

Solubility (g/solv. 100 g)

NMP	GBL	PGMEA	Acetone	Ethyl lactate	PGME	Methanol	H ₂ O
62	81	55	107	31	44	3	<0.5

Characteristics

Shows high stability (pot life) in various compositions (epoxy × thiol and epoxy × acid anhydride).
 Generates a strong base, biguanide (pKb_H=31.8), upon irradiation.
 Can be exposed with sensitizer at 365 nm and longer wavelength.

Example of Use 1

■Anionic UV curing of epoxy oligomer × polyfunctional thiol

Conditions ·

Preparation: Mix 3-10 parts of WPBG-345, 0.6-2 parts of 2-isopropylthioxanthone (0.2 equivalent amount to WPBG), and 100 parts of jER[®]828 (epoxy equivalent of 185, Product of Mitsubishi Chemical Corporation), and heat or use a diluent to promote dissolution. Mix 70 parts of KarenzMT[®]PE1 (SH equivalent of 138.5, Product of Showa Denko K.K.) at room temperature.

Stability of components as pot life (period in which the viscosity does not exceed the twice of the initial viscosity): 2 month or more (10° C), 3 weeks (25° C), and 3 days (40° C)

Exposure: Irradiation for 10 seconds (Illuminance: 5mW/cm² (254 nm), 100 mW/cm² (365 nm), and 261 mW/cm² (405 nm))

Results

	PEB (°C)	Omin	5min	10min	20min	30min	40min	60min	90min	120min
	50									
	80									
	100									
	120									
PBG 3 parts	150									
	PEB (°C)	Omin	5min	10min	20min	30min	40min	60min	90min	120min
	50									
	80									
	100									
	120									
PBG 5 parts	150									
	PEB (°C)	Omin	5min	10min	20min	30min	40min	60min	90min	120min
	50									
	80									
	100									
	120									
PBG 10 parts	150									

Post-exposure bake: Illuminance 1.0 J/cm2 (@365 nm)

Effect of exposure amounts: Post-exposure bake at a fixed temperature of 120°C

	PEB(°C)		120°C							
	value (J/cml)	Omin	5min	10min	20min	30min	40min	60min	90min	120min
	0.1									
	0.3									
	0.5									
	1									
	2									
	5									
PBG 3 parts	10									
	PEB(°C)	120°C								
	Exposure value (1/cm)	Omin	5min	10min	20min	30min	40min	60min	90min	120min
	0.1									
	0.3									
	0.5									
	1									
	2									
	5									
PBG 5 parts	10									
	DEB (%)					120°C				
	Exposure	Omin	Emin	10min	20min	30min	40min	60min	90min	120min
		Omin	Smin	TOMIN	Zomin	Somin	40min	Somin	901111	1201111
	0.1									
	0.5									
	1									
	2									
	5									
PBG 10 parts	10									
i bo i o parto	I									

Color	Exposure	Unexposure
	Liquid	Liquid
	Thick	Liquid
	Cured	Liquid
	Cured	Cured

lonic-type WPBG-345

Example of Use 2

Patterning by epoxy oligomer × carboxylic acid

Conditions

Preparations: Mix 1-10 parts of WPBG-345, 0.2-2 parts of 2-isopropylthioxanthone (0.2 equivalent amount to WPBG), and 100 parts of jER®828 (epoxy equivalent of 185, Product of Mitsubishi Chemical Corporation) and 64 parts of Joncryl[®]682 (OH equivalent of 138, Product of BASF Japan Ltd.) into 300 parts of γ -butyrolactone.

Film-forming: Polycarbonate, film thickness: 10-20 µm

Exposure: Optional (Illuminance: 5mW/cm² (254 nm), 100 mW/cm² (365 nm), and 261 mW/cm² (405 nm))

Post-exposure bake: 150°C/10 minutes

Development: 1 wt% Na₂CO₃, Immerse for 1 minute \rightarrow rinse with water.

Results

Effects of exposure amounts:

	Exposure value (J/cm ²)	0.1	0.3	0.5	1	2	5	10
PBG 1 part	Existence of remaining film							
·	Exposure value (J/cm ²)	0.1	0.3	0.5	1	2	5	10
PBG 3 parts	Existence of remaining film							
·	Exposure value (J/cm ²)	0.1	0.3	0.5	1	2	5	10
PBG 5 parts	Existence of remaining film							
	Exposure value (I/cm ²)	0.1	0.3	0.5	1	2	5	10
PBG 10 parts	Existence of remaining film	0.1	0.0	0.0		-	5	.0

Color	Exposure	Unexposure
	Liquid	Liquid
	Thick	Liquid
	Cured	Liquid

Chemical name 9-Anthrylmethyl N,N-diethylcarbamate

Solubility (g/solv. 100 g)

NMP	GBL	PGMEA	Acetone	Ethyl lactate	PGME	Methanol	H_2O
>50	>50	>50	>50	>50	>50	10	<0.5

Characteristics

Light absorption in long-wavelength region, and has excellent solubility.
 Shows high stability in different monomers.

•Generates diethylamine (b.p. =55°C) of secondary amine by light irradiation.

•Can be used as a sensitizer for WPBG-300 and WPBG-345.

Non-ionic type

WPBG-140

Chemical name 1-(Anthraquinon-2-yl)ethyl imidazolecarboxylate

Solubility										
NMP	GBL	PGMEA	Acetone	Ethyl lactate	PGME	Methanol	H_2O			
14	11	1	<0.5	5	1	1	<0.5			
Characteristics Exhibits absorption region in the vicinity of 350 nm.										

Exhibits absorption region in the vicinity of 350 nm.
 Generates imidazole (m.p.=89-91°C, b.p.=256°C) by light irradiation
 Has radical polymerization initiating ability.

Chemical name (2-Nitrophenyl)methyl 4-(methacryloyloxy)piperidine-1-carboxylate

Characteristics

Can introduce PBG into polymer by radical polymerization since it has a polymerizable methacrylic group.
 Has excellent solubility

•Generates 4-methacyloxypiperidine of secondary amine by light irradiation.

Chemical name (E)-1-Piperidino-3-(2-hydroxyphenyl)-2-propen-1-one

PBG Reagent List

2016.1.27

Main Structure	Generated Base	Product Name	Product code	Packaging
	ну	WPBG-015	359-33631	1 g
		9-Antrylmethyl Piperidine-1-carboxylate	355-33633	5 g
		WPBG-018	356-33641	1 g
	HNEt ₂	9-Anthrylmethyl N,N-diethylcarbamate	352-33643	5 g
	\frown	WPBG-041	353-33651	1 g
	H ₂ N	9-Anthrylmethyl N-cyclohexylcarbamate	359-33653	5 g
	H N	WPBG-172	350-33661	1 g
	\cup \cup	9-Anthrylmethyl N,N-dicyclohexylcarbamate	356-33663	5 g
	\square	WPBG-174	351-33691	1 g
	H ₂ N	1-(Anthraquinon-2-yl)ethyl N-cyclohexylcarbamate	357-33693	5 g
	H	WPBG-166	354-33681	1 g
		1-(Anthraquinon-2-yl)ethyl N,N-dicyclohexylcarbamate	350-33683	5 g
0	HN N	WPBG-140	357-33671	1 g
	\/	1-(Anthraquinon-2-yl)ethyl imidazole-1-carboxylate	353-33673	5 g
	HNOH	WPBG-158	358-33721	1 g
		4-hydroxypiperidine-1-carboxyrate	354-33723	5 g
		WPBG-165	355-33731	1 g
		4-(methacryloyloxy)piperidine-1-carboxylate	351-33733	5 g
_	\frown	WPBG-025	354-33701	1 g
	H ₂ N	(E)-N-Cyclohexyl-3-(2-hydroxyphenyl)acrylamide	350-33703	5 g
OH NK2	ны	WPBG-027	351-33711	1 g
		(E)-1-Piperidino-3-(2-hydroxyphenyl)-2-propen-1-one	357-33713	5 g
		WPBG-168	359-33751	1 g
0 04	H ₂ N	Cyclohexylammonium 2-(3-benzoylphenyl)propionate	355-33753	5 g
	H	WPBG-167	356-33761	1 g
HNR ₃		Dicyclohexylammonium 2-(3-benzoylphenyl)propionate	352-33763	5 g
	NH	WPBG-082	352-33741	1 g
	H ₂ N ^M NH ₂	Guanidinium 2-(3-benzoylphenyl)propionate	358-33743	5 g

List of PBG-related Items

2016.1.27

	Structural	Product Name	Product code	Packaging
	Si(OEt) ₄	Tetraethyl Orthosilicate	053-03476	500 mL
	O Si(OMe) ₃	3-Glycidoxypropyltrimethoxysilane	302-60432	25 g
	01	[0. (0.4. Encourse (alcheory)) attributions the second	321-91252	25 g
	Si(OMe) ₃	[2-(3,4-Epoxycycionexyi)ethyijtrimethoxysilane	329-91253	100 g
		0 (Triethe-rick)) preprid les grappes	324-91242	25 g
Metal	$OCN \rightarrow SI(OEt)_3$	3-(Thethoxyshy)propyl isocyanate	322-91243	100 g
alkoxide	Ti/O/Pr\.	Titanium Tatraisanranovida	205-08172	25 mL
	11(07-174		207-08176	500 mL
		Titanium/()/) Tatrabutavida	202-06502	25 g
	11(004119)4	Titamum(TV) Tetrabuloxide	206-06505	500 g
		Titanium/()/) Tategly tauida, Tategman	205-09772	25 mL
		Titanium(TV) Tetrabuloxide, Tetramer	209-09775	500 mL
	Zr(Ot-Bu) ₄	Zirconium(IV) t-Butoxide	353-13491	5 g
		2.4.6 Tric(allylovy) 1.2.5 triazina	201-02292	25 g
		2,4,0-1115(allyloxy)-1,5,5-thazine	205-02295	500 g
Polyfunctional allyl		TRIAM [®] -705	909-40246	500 g
		TRIAM [®] -805	863-43710	500 g
	HS O SH		327-21642	25 g
	HS CH3	Trimethylolpropane Tris(mercaptoacetate)	321-21645	500 g
Polyfunctional	HS SH		326-21612	25 g
thiol	HS TO CSH	Pentaerythritoi letrakis(mercaptoacetate)	320-21615	500 g
	HS	Denteory thrited Tetrakia/2 margantenrenianate)	329-21722	25 g
	SH CSH		323-21725	500 g
	\bigcirc		325-24421	10 g
Polyfunctional	2,00,×	9,9-Bis[4-(giyciayioxy)phenyi]fiuorene	321-24423	100 g
сролу		3,4-Epoxycyclohexylmethyl	326-64072	25 g
		3',4'-Epoxycyclohexanecarboxylate	320-64075	500 g

Acid anhydride	H ₃ C	Methyl-5-norbornene-2,3-dicarboxylic	134-05951	200 g
		Anhydride	136-05955	500 g
		Allylsuccinic Anhydride	015-20331	5 g
			013-20332	25 g
Isocyanate	OCN CH3	Tolylene 2,4-Diisocyanate	205-04892	25 g
			209-04895	500 g
	H ₃ C H ₃ C H ₃ C	3-Isocyanatomethyl-3,5,5-trimethylcyclohexyl	090-03022	25 mL
		Isocyanate(mixture of isomers)	094-03025	500 mL
	OCN NCO	Hexamethylene Diisocyanate	082-02822	25 g
			086-02825	500 g
Sensitizer	CH ₃ CH ₃	2-Isopropylthioxanthone	352-28932	25 g
			350-28933	100 g
	CH3 CH3	Vitamin K ₁	221-00371	1 g
			227-00373	5 g
Polymerization inhibitor	Ph-N N=0 N=0 N=0 N=0 N Ph-N Ph	N-Nitroso-N-phenylhydroxylamine	143-04562	25 g
		Aluminium Salt	147-04565	500 g
Carboxylic acid	O CH ₃ CO ₂ H	Ketoprofen	115-00381	5 g
			113-00382	25 g

FUJ!FILM

FUJIFILM Wako Pure Chemical Corporation

FUJIFILM Wako Pure Chemical Corporation 4-1 Nihonbashi Honcho 2-Chome, Chuo-Ku, Tokyo 103-0023, Japan

TEL+81-3-3244-0305

FUJIFILM Wako Chemicals U.S.A. Corporation 1600 Bellwood Road Richmond,

VA 23237, U.S.A. TEL+1-804-271-7677

FUJIFILM Wako Chemicals Europe GmbH Fuggerstrasse 12 D-41468 Neuss GERMANY Germany TEL+49-2131-311-0

Wako Chemicals (Shanghai) Co., Ltd. C1-C2, 26F, Junyao International Plaza, 789 Zhaojiabang Road, Shanghai 200032, China TEL+86-21-6407-0511

Specialty Chemicals Web Site

http://www.wako-chem.co.jp/ kaseihin_en/