

Reagents for Nucleic Acid Synthesis

Product features

- Lineup of ancillary reagents for phosphoramidite method
- Provides products with guaranteed low water content based on advanced dehydration technology
- Customizable composition and scale-up
- Labels in different colors by reagent type to avoid mix-ups

Product Line-up

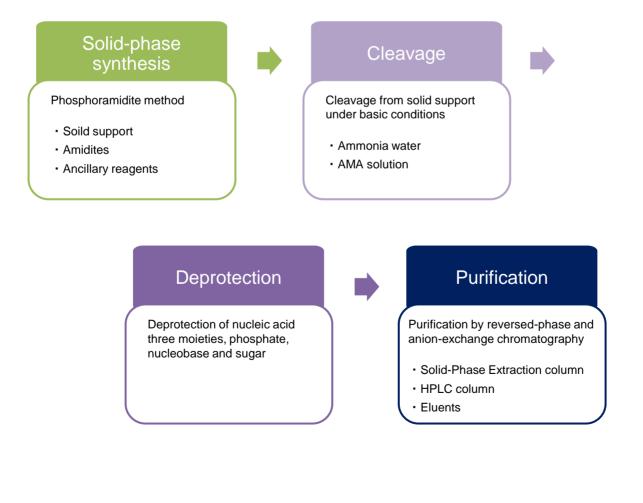
- Deblocking Reagents
- Activators
- Capping Reagents
- Oxidation Reagents
- Sulfurizing Reagents

- Phosphoramidites
- Solvents
- Purification Products
- Common Chemicals

Contents

Introduction, Nucleic acid synthesis	p. 1-4
Ancillary Reagents	p. 5-12
 Deblocking Reagents Activators Capping Reagents Oxidation Reagents Sulfurizing Reagents ÄKTA oligopilot Reagents 	
Phosphoramidites	p. 13-14
Dehydrated solvents	p. 15
Reagents for amidite synthesis	p. 16
 Tritylation Reagents Base Reagents Silylation Reagents Phosphorylation Reagents 	
Cleavage / Deprotection Reagents	p. 17-18
 Cleavage/Deprotection of nucleobase moieties Deprotection of phosphate moieties Deprotection of 2' protecting group 	
Purification Products	p. 19-20
 Solid-Phase Extraction Column HPLC Column Eluents 	
Common Chemicals	p. 21

• Drying Traps


Introduction

Our lineup of nucleic acid synthesis reagents focuses on ancillary reagents and dehydration solvents for use in the synthesis of oligonucleotides using the phosphoramidite method. We provide reagents of suitable quality for nucleic acid synthesis by leveraging our unique liquid preparation, synthesis, dehydration, and analysis technologies developed over years of reagent manufacturing.

Nucleic acid

"Nucleic acids" are a collective term for deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). Its constituent molecule is an oligonucleotide, a structure of bases, sugars, and phosphates linked by phosphodiester bonds. "Nucleic acid medicine," which has attracted considerable attention in recent years, uses DNA and RNA molecules, which are the carriers of genetic information in living organisms, as drugs. There is a high expectation that this approach will lead to next-generation drugs because they can act on biological molecules that cannot be targeted by conventional small-molecule agents or antibody drugs.¹⁾ Another characteristic is that oligonucleotides, the main component of "nucleic acid drugs," can be manufactured by organic synthesis (mainly solid-phase synthesis) using an automated synthesizer.

Synthesis of oligonucleotide by solid-phase synthesis ~ Purification flow

Nucleic Acid Synthesis Method

Phosphoramidite method

The traditional method for synthesizing oligonucleotides is called the phosphoramidite method, which is a form of solid-phase synthesis that involves the addition of a phosphoramidite monomer (monoamide of phosphite diester) to a solid-phase support. The fundamental reaction to bind the amidite, which is a nucleic acid monomer, consists of 4 steps: Step 1 detritylation→ Step 2 amidite coupling reaction→ Step 3 capping reaction→ Step 4 oxidation or sulfurization. A cycle consisting of these 4 steps is repeated until the desired strand length is obtained (see Figure 1). An automated synthesizer is used for this reaction.

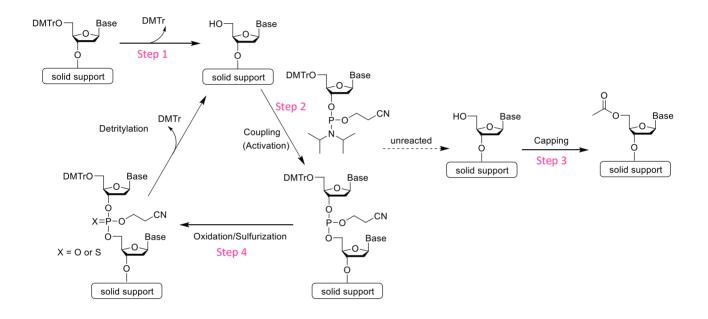
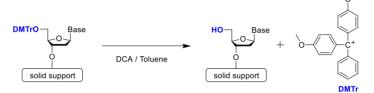
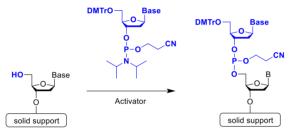
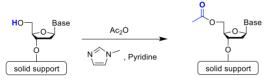



Fig 1. Reaction mechanism of phosphoramidite method

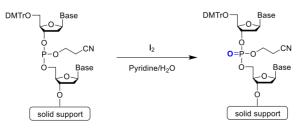
Reactions and reagents for the phosphoramidite method²⁾


Step 1 Detritylation

Step 1 is detritylation. 4,4'-Dimethoxytrityl group (DMTr group) is often used to protect the hydroxy group at the 5' position. Since the trityl cation is stabilized by two methoxy groups, it can be easily cleaved by treatment with a weak acid. Dichloroacetic acid or trichloroacetic acid is used as the acid.


Step 2 Coupling Reaction (Activation)

Step 2 is the coupling reaction. Condensation occurs between the nucleotide unit to be bound and the nucleoside on the solid support or the oligonucleotide being synthesized. In general, 5-Benzylthio-1*H*-tetrazole (BTT), 5-Ethylthio-1*H*-tetrazole (ETT), or 4,5-Dicyanoimidazole (DCI) is used to activate phosphoramidite.


Step 3 Capping Reaction

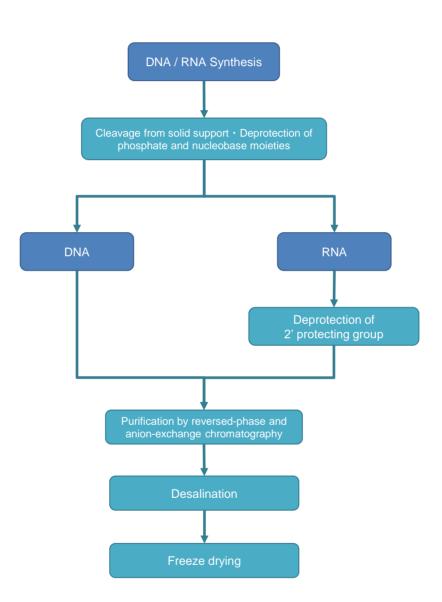
Step 3 is the capping reaction. In the phosphoramidite method, an incomplete oligo that has one less base than the desired oligonucleotide may be formed if the coupling reaction does not progress completely and proceeds to the next step with an unreacted hydroxy group remaining. Therefore, the 5'-OH group of the unreacted strand is acetylated to prevent elongation reaction.

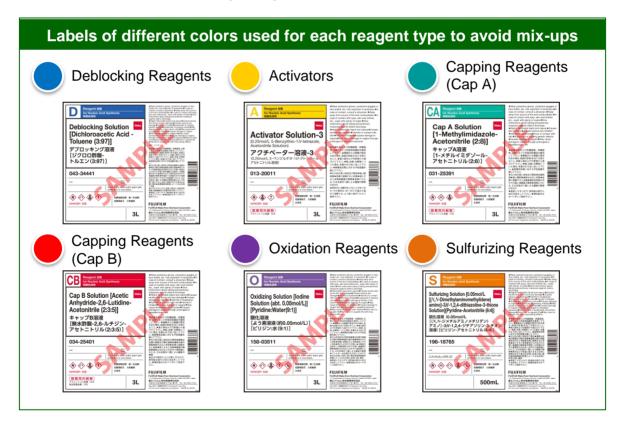
Step 4 Oxidation

Step 4 is oxidation. A phosphite ester bond is formed during phosphoramidite coupling. This is slightly unstable and may cause a side reaction during further elongation reactions. To prevent this, it is converted into a stable phosphate ester. Iodine (I_2) is the most commonly used oxidizing reagent.

Purification process of nucleic acid

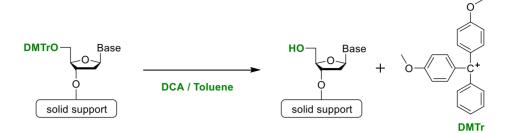
The oligonucleotide synthesized by solid-phase synthesis is retained on the solid support and is thus cleavaged using a base. The protecting groups that were introduced into reactive substituent groups during oligonucleotide synthesis cycles to avoid their participation in coupling are deprotected to complete the reaction. After cleavage and deprotection, the crude material is separated and purified by reversed-phase or anion-exchange chromatography to obtain the desired oligonucleotide.³⁾




Fig 2. Separation/purification process after DNA/RNA synthesis

Ancillary reagents

Features		Lineup of ancillary reagents for phosphoramidite method
	\succ	Provides products guaranteed to have a low water content based on advanced
		dehydration technology
	\geqslant	Supports customization of concentration and composition
	\geqslant	Supports scale-up and mass production

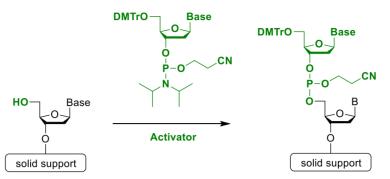

Fig 3. Reagent bottles and rabel colors.

Cap connection between reagent bottles and automated synthesizers

• The glass gallon container used for our 3 L packaging does not fit the bottle cap provided with ÄKTA oligopilot. Before use, transfer it to a container with the GL45 screw thread.

Deblocking Reagents

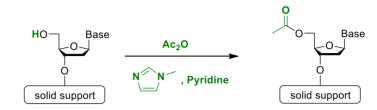
Toluene					
Code No.		Product Name	Pkg. Size	Water Content	Storage Condition
045-34445	Deblo	ocking Solution	500 mL	< 000mmm	Keen of DT
043-34441	[Dich	loroacetic Acid-Toluene (3:97)]	3 L	≦200ppm	Keep at RT
047-34525	Deblo	ocking Solution	500 mL	≦500ppm	Keep at RT
045-34521	[Dich	loroacetic Acid-Toluene (5:95)]	3 L		
040-34515	Deblo	ocking Solution	500 mL		
048-34511	[Dich	loroacetic Acid-Toluene (10:90)]	3 L	≦0.1%	Keep at RT


DCM				
Code No.	Product Name	Pkg. Size	Water Content	Storage Condition
048-28923		1 L		
042-28921	Deblocking Solution-1 (3w/v% Trichloroacetic Acid, Dichloromethane Solution)	3 L	≦40ppm	Keep at RT
042-28926		3 L×4		

• For preparation at the time of use, use the following reagent

Code No.	Product Name	Pkg. Size	Water Content	Storage Condition
200-02402		25 g		
202-02401	Trichloroacetic Acid	100 g	_	Keep at RT
204-02405		500 g		
044-31235	Dicklasses atheres Courses Dalaudrated	500 mL	≦10ppm	Keep at RT
048-31233	Dichloromethane, Super Dehydrated	3 L		
040-16653	Disklassestis Asid	25 mL		Keen et DT
044-16656	Dichloroacetic Acid	500 mL	—	Keep at RT
204-17915	Taluana Quran Dahudratad	500 mL	< 10mmm	Keen et DT
206-17914	Toluene, Super Dehydrated	3 L	≦10ppm	Keep at RT

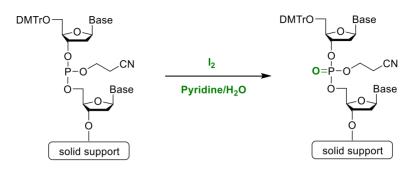
Activators


Powder / Solid

	Cond						
Code No.	Product Name	Structure	CAS RN®	Pkg. Size	Water Content	Storage Condition	
044-34851				5 g			
042-34852	4,5-Dicyanoimidazole	^H N CN N 1122-28-7	25 g	≦300ppm	Keep at RT		
046-34855			CN	500 g			
051-09491				5 g			
059-09492	5-Ethylthio-1H-tetrazole	N, N → S → N − NH	89797-68-2	25 g	≦300ppm	Keep at RT	
053-09495		IN INFI		500 g			
130-19221	N-Methylbenzimidazolium	H H N		5 g			
138-19222	Trifluoromethanesulfonate	CF ₃ SO ₃	CF ₃ SO ₃ 361447-89-4		25 g	≦300ppm	Keep at RT
161-29041	<i>N</i> -(Phenyl)imidazolium	+		5 g	6000		
169-29042	Trifluoromethanesulfonate	CF ₃ SO ₃		361447-81-6	25 g	≦300ppm	Keep at RT

Solution

Solut						
Code No.	Product Name	Structure	CAS RN®	Pkg. Size	Water Content	Storage Condition
013-19685	Activator Solution-1	KN → CN	1100 00 7	500 mL		
011-19681	(0.25 mol/L 4,5-Dicyanoimidazole, Acetonitrile Solution)	Ň-(CN	1122-28-7	3 L	≦30ppm	Keep at RT
011-19701	Activator Soluiton-2 (0.45 mol/L 1 <i>H</i> -Tetrazole, Acetonitrile Solution)	N∕N N−NH	288-94-8	3 L	≦30ppm	Keep at RT
015-20015	Activator Solution-3 (0.25 mol/L 5-Benzylthio-1 <i>H</i> -tetrazole, Acetonitrile Solution)	(0.25 mol/L 5-Benzylthio-1 <i>H</i> -tetrazole, NSS	21871-47-6	500 mL	< 20mm	Keen of DT
013-20011			N N-NH	· · ·	3 L	≦30ppm
010-19695				500 mL		
012-19699	Activator Solution-4 (0.25 mol/L 5-Ethylthio-1 <i>H</i> -tetrazole, Acetonitrile Solution)	N, N S ∽ N−NH	00707 00 0	2.5 L	< 20mmm	Keen of DT
018-19691		Ň–ŃH	89797-68-2	3 L	≦30ppm	Keep at RT
012-19694				3 L×4		



THF					
Code No.		Product Name	Pkg. Size	Water Content	Storage Condition
036-18991	Cap A	Solution-1	3 L	<100 mm	
032-18993	(10vol9	10vol% Acetic anhydride/Tetrahydrofuran Soluiton)		≦100ppm	Keep at RT
033-19001	1 1	Solution-1	3 L	< 100	
039-19003	Solutio	nydrofuran/1-Methylimidazole/Pyridine (8:1:1) on]	3 L×4	≦100ppm	Keep at RT
030-19011		Cap A Solution-2 [Tetrahydrofuran/Acetic Anhydride/Pyridine (8:1:1) Solution]		< 100	
034-19014	1-			≦100ppm	Keep at RT
037-19021	Cap B	Solution-2	3 L	≤100ppm	Keen of DT
031-19024	(10vol% 1-Methylimidazole/Tetrahydrofuran Solution)		3 L×4	≦100ppm	Keep at RT

Acetonitrile				
Code No.	Product Name	Pkg. Size	Water Content	Storage Condition
036-25385	Cap B1 Solution	500 mL		Kasa at DT
034-25381	[Acetic Anhydride-Acetonitrile (4:6)]	3 L		Keep at RT
039-25635	Cap B2 Solution	500 mL	<100 mm	
033-25633	[Pyridine-Acetonitrile (6:4)]	3 L	≦100ppm	Keep at RT
039-25375		500 mL		
031-25374	Cap B2 Solution [2,6-Lutidine-Acetonitrile (6:4)]	2.5 L	≦100ppm	Keep at RT
037-25371		3 L		
034-25401	Cap B Solution [Acetic Anhydride-2,6-Lutidine-Acetonitrile (2:3:5)]	3 L	_	Keep at RT

Oxidation Reagents

THF				
Code No.	Product Name	Pkg. Size	Water Content	Storage Condition
156-02451	Oxidizing Solution-2	3 L		
152-02453	[0.1 mol/L l ₂ • THF:Pyridine:Water(78:20:2)Solution]	3 L×4	1 —	Keep at RT

THF free				
Code No.	Product Name	Pkg. Size	Water Content	Storage Condition
150-03515		500 mL		
158-03516	Oxidizing Solution [Iodine Solution (abt. 0.05 mol/L)][Pyridine:Water(9:1)]	2.5 L	_	Keep at RT
158-03511		3 L	-	

Sulfurizing Reagents

Chemical modifications of the nucleic acid phosphate moiety include phosphorothioate modification where O (oxygen atom) is substituted by S (sulfur atom). In nucleic acid medicine, sulfurizing modification is used mainly for antisense drugs.⁴⁾ Phosphorothioate synthesis is achieved by having a sulfurizing reagent act on the phosphite ester formed by a coupling reaction.

Powder	/ Solid					
Code No.	Product Name	Structure	CAS RN®	Pkg. Size	Water Content	Storage Condition
324-72121	3 <i>H</i> -1,2-Benzodithiol-3-one 1,1-Dioxide 【Beaucage reagent】	S S S S S	66304-01-6	500 mg	-	Keep at 2-10 degrees C.
027-19422	Bis(phenylacetyl) Disulfide 【PADS】	Bis(phenylacetyl) Disulfide	45000 70 5	25 g		Keep at RT
021-19425			15088-78-5	500 g	_	
166-28251				5 g		
164-28252	5-Phenyl-3 <i>H</i> -1,2,4-dithiazol-3-one		7047-10-1	25 g	≦200ppm	Keep at 2-10 degrees C.
168-28255				500 g		

The most commonly used reagent, DDTT, is highly crystalline and hardly dissolves in acetonitrile, the reaction solvent. Therefore, acetonitrile is spiked with pyridine to increase its solubility. On the other hand, 5-phenyl-3*H*-1,2,4-dithiazole-3-one shows favorable solubility in acetonitrile and is thus a convenient sulfurizing reagent that can be used pyridine-free.

Sulfurizing Reagents

Solution

Code No.	Product Name	Structure	CAS RN®	Pkg. Size	Water Content	Storage Condition					
199-18751	Sulfurizing Solution		- N		- N			a N 100 mL			
191-18755	(0.05 mol/L 5-Phenyl-3 <i>H</i> -1,2,4-dithiazol- 3-one, Acetonitrile Solution)		7047-10-1	500 mL	_	Keep at RT					
192-18741	Sulfurizing Solution	0 N 7047-10-1	0 S-S	0 S-S				N 7047-10-1	100 mL		
194-18745	(0.1 mol/L 5-Phenyl-3 <i>H</i> -1,2,4-dithiazol- 3-one, Acetonitrile Solution)				7047-10-1	7047-10-1	7047-10-1		500 mL	_	Keep at RT

Our sulfurizing solutions are distributed after the stability of the compound in organic solvents is confirmed.

[Notes]

- 1. Sulfurizing reagents manufactured by FUJIFILM Wako Pure Chemical Corporation or FUJIFILM Wako Chemical Corporation are distributed for research-only purposes. If you are seeking products for commercial use, please refer to the related patents of the compound.
- 2. Code No. 324-72121 is distributed as a non-standard product without specific limitations on its use. Please refer to related patents of the compound if you intend to use it for nucleic acid synthesis.

Reagents for ÄKTA oligopilot

Features

- > Composition for automated synthesizer ÄKTA oligopilot (Cytiva)
- Free from THF which may cause deterioration of the synthesizer flow channel
 Can be supplied from laboratory to industrial scale

Fig 4. ÄKTA oligopilot

Code No.	Product Name	Pkg. Size	Water Content	Storage Condition	
Deblocking Rea	agents				
043-34441	Deblocking Solution [Dichloroacetic Acid-Toluene (3:97)]	3 L	≦200ppm	Keep at RT	
045-34521	Deblocking Solution [Dichloroacetic Acid-Toluene (5:95)]	3 L	≦500ppm	Keep at RT	
048-34511	Deblocking Solution [Dichloroacetic Acid-Toluene (10:90)]	3 L	≦1000ppm	Keep at RT	
Activators			1	I	
011-19681	Activator Solution-1 (0.25 mol/L 4,5-Dicyanoimidazole, Acetonitrile Solution)	3 L	≦30ppm	Keep at RT	
011-19701	Activator Soluiton-2 (0.45 mol/L 1 <i>H</i> -Tetrazole, Acetonitrile Solution)	3 L	≦30ppm	Keep at RT	
013-20011	Activator Solution-3 (0.25 mol/L 5-Benzylthio-1 <i>H</i> -tetrazole, Acetonitrile Solution)	3 L	≦30ppm	Keep at RT	
012-19699	Activator Solution-4 (0.25 mol/L 5-Ethylthio-1 <i>H</i> -tetrazole, Acetonitrile Solution)	2.5 L	≦30ppm	Keep at RT	
Capping Reage	nts	I	I	I	
034-25381	Cap B1 Solution [Acetic Anhydride-Acetonitrile (4:6)]	3 L	_	Keep at RT	
033-25633	Cap B2 Solution [Pyridine-Acetonitrile (6:4)]	3 L	≦100ppm	Keep at RT	
031-25374	Cap B2 Solution [2,6-Lutidine-Acetonitrile (6:4)]	2.5 L	≦100ppm	Keep at RT	
034-25401	Cap B Solution [Acetic Anhydride-2,6-Lutidine-Acetonitrile (2:3:5)]	3.0 L	_	Keep at RT	
Oxidation Reagents					
158-03516	Oxidizing Solution [lodine Solution (abt. 0.05mol/L)][Pyridine:Water(9:1)]	2.5 L	_	Keep at RT	

Provides high-quality phosphoramidite

Features

- Supports small scale to bulk scale
- Supplies company-specific products in containers compatible with each synthesizer, such as ABI, Expedite, MerMade, and ÄKTA oligopilot

Modified phosphoramidite

Nucleic acid drugs have chemical modifications of the nucleobase, phosphate, or sugar moiety for functional improvements, such as acquisition of nuclease resistance and improvement of binding affinity to target nucleic acids. Modifications of the sugar moiety include 2'-position modifications and bridging modifications.

2'-Fluoro (2'-F), 2'-O-methyl (2'-OMe), and 2'-O-methoxyethyl (2'-MOE) modifications are known 2'-position modifications. Kynamro[®], a nucleic acid drug marketed in 2013, is a representative Gapmer-type antisense, which uses 2'-MOE at both ends (wing sites) of the oligo nucleic acid to increase binding affinity to the target RNA in addition to sulfurization to improve in vivo stability.⁴⁾⁵⁾

Bridging modifications were developed under the concept of "fixing the fluctuating conformation of the sugar moiety by bridging." The sugar moiety can be fixed to the RNA type (N type) by chemically modifying the 2'- and 4'-positions of the sugar moiety. This confers excellent binding affinity to the target complementary strand nucleic acid, and furthermore, steric hindrance due to bridging is expected to improve functionality including nuclease resistance. In 1997, 2',4'-BNA/LNA (bridged nucleic acid) was developed by Imanishi, Obika, and others from the School of Pharmaceutical Sciences, Osaka University.⁴⁾⁵

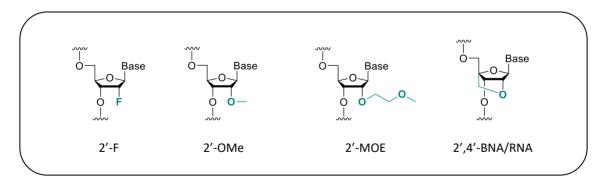


Fig 5. Structure of modified nucleic acids

Locked Nucleic Acid

Code No.	Product Name	Structure	CAS RN®	Pkg. Size	Water Content	Storage Condition
128-06771	Locked Nucleic Acid-A(Bz)		000055 70 0	1 g		Keep at
124-06773	Cyanoethyl Phosphoramidite (mixture of isomers)		206055-79-0	5 g	≦0.5%	-20 degrees C.
125-06781	Locked Nucleic Acid-G(DMF)		700044 70 0	1 g		Keep at
121-06783	Cyanoethyl Phosphoramidite (mixture of isomers)		709641-79-2	5 g	≦0.5%	-20 degrees C.
122-06791	Locked Nucleic Acid-mC(Bz)		000055 00 5	1 g		Keep at
128-06793	Cyanoethyl Phosphoramidite (mixture of isomers)		206055-82-5	5 g	≦0.5%	-20 degrees C.
125-06801	Locked Nucleic Acid-T		000055 75 0	1 g		Keep at
121-06803	Cyanoethyl Phosphoramidite (mixture of isomers)		206055-75-6	5 g	≦0.5%	-20 degrees C.

We supply locked nucleic acids in containers (glass bottles) that meet our specifications.

Acetonitrile (Low moisture guaranteed)

Features

- > Water content ≤10ppm guaranteed, optimal for nucleic acid synthesis due to minimal water content
- > Absorbance guaranteed (260 nm, 280 nm, 400 nm)
- > Can be supplied from laboratory to industrial scale

Code No.	Product Name	Pkg. Size	Water Content	Storage Condition
017-27111	Acatonitrila, Curan Dabudratad	3 L	< 10mmm	Keep at RT
015-27117	Acetonitrile, Super Dehydrated	18 L	≦10ppm	

[Notes]

- . 1. 2.
- Acetonitrile is available in 3 L glass bottle and returnable container for larger volumes. Returnable containers made 304 stainless steel. Coupler size is 18 L (2P on gas side, 3P on liquid side), 100L (3P on gas side, 4P on liquid side).
- 3. Please use up the regents completely and return it to the agency immediately after use.

Fig 6. Image of container (left : 3L glass bottle, center / right : stainless containers)

In addition to acetonitrile, we provide solvents with guaranteed low water content for organic synthesis.

Code No.	Product Name	Pkg. Size	Water Content	Storage Condition
167-18455	Decision Debuderted	500 mL	≦50ppm	Keep at RT
165-18451	Pyridine, Dehydrated 18451	3 L		
204-17915	Talaana Dahadadad	500 mL		
206-17914	Toluene, Super Dehydrated	3 L	≦10ppm	Keep at RT

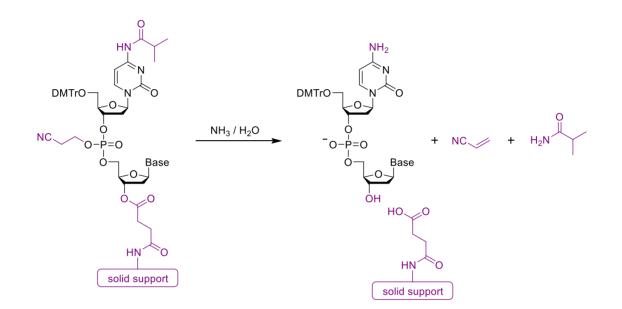
Tritylation Reagents

Code No.	Product Name	Structure	CAS RN®	Pkg. Size	Storage Condition		
130-19282	4 Mathur Adda Oblacida	C CI		-	44470.00.4	25 g	
132-19281	4-Methoxytrityl Chloride		14470-28-1	100 g	Keep at RT		
046-34872				10015 00 0	25 g		
048-34871	4,4'-Dimethoxytrityl Chloride	ò-(C)-(CI	40615-36-9	100 g	Keep at RT		

Base Reagents

Cod	le No.	Product Name	Pkg. Size	Storage Condition
059-	-05352	<i>N</i> -Ethyldiisopropylamine 【DIPEA】	25 mL	Keep at RT
164-	-05312	Pyridine	25 mL	Keep at RT

Silylation Reagents

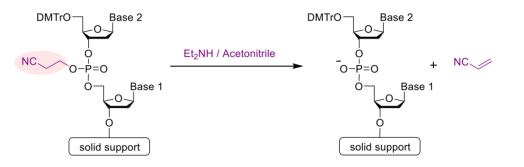

Code No.	Product Name	Structure	CAS RN®	Pkg. Size	Storage Condition
043-34681	1,3-Dichloro-1,1,3,3-		69304-37-6	5 g	Keep at RT
041-34682	tetraisopropyldisiloxane			25 g	

Phosphorylation Reagents

Code No.	Product Name	Structure	CAS RN®	Pkg. Size	Storage Condition
037-25751	2-Cyanoethyl N,N-Diisopropylchloro			1 g	Keep at 2-10 degrees C.
033-25753	phosphoramidite	NC O CI	89992-70-1	5 g	
028-19751	Bis(diisopropylamino)		56183-63-2	5 g	Keep at 2-10 degrees C.
026-19752	chlorophosphine			56183-63-2 25 g	
035-25671	2-Cyanoethyl <i>N,N,N,N</i> -Tetraisopropyl phosphordiamidite	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	102691-36-1	5 g	Keep at -20 degrees C.

Cleavage/Deprotection of nucleobase moieties

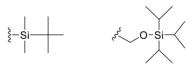
The crude oligonucleotide obtained by solid-phase synthesis remains bound to the solid support. After synthesis, it is cleavaged from the solid support by ester hydrosis with a base such as concentrated ammonia water. At the same time, the protecting group introduced into the amino group of the nucleobase moiety is removed under basic conditions. Instead of concentrated ammonia water, methylamine solution, AMA solution (a mixture of concentrated ammonia water and methylamine solution), or potassium carbonate/methanol solution may be used for this reaction depending on the type of protecting group.



Code No.	Product Name	Pkg. Size	Storage Condition
017-03176	25% Ammonia Solution	500 mL	Keep at RT
132-01856	40% Methylamine Solution	500 mL	Keep at RT

Deprotection of phosphate moieties

Deprotection of 2-cyanoethyl group


The 2-cyanoethyl group, which protects the phosphate moiety, generates acrylonitrile as a byproduct when deprotected with concentrated ammonia water. Acrylonitrile may cause 2-cyanoethylation through addition reaction to the nucleobase moiety. As a method to avoid the side reaction of acrylonitrile, a weak base reagent such as diethylamine/acetonitrile solution, instead of generally used concentrated ammonia water, can be used to deprotect the 2-cyanoethyl group while maintaining binding with the solid support, followed by cleavage from the solid support and deprotection of the protecting group of the nucleobase moiety.

Code No.	Product Name	Pkg. Size	Storage Condition
045-34825	20% Diethylamine Acetonitrile Solution	500 mL	Keep at RT
017-27111	Acetonitrile, Super Dehydrated	3 L	Keep at RT

Deprotection of 2' protecting group

For the purpose of RNA synthesis, the hydroxy group at the 2'-position of the sugar moiety is also protected. A *tert*-butyldimethylsilyl group (TBDMS group) or triisopropylsilyloxymethyl group (TOM group) is commonly used as the protecting group. Both TBDMS and TOM groups can be deprotected by treatment with fluoride ions such as tetrabutylammonium (TBAF) solution.³⁾

TBDMS group

TOM group

Code No.	Product Name	Pkg. Size	Storage Condition	
208-20201	Tetrabutylammonium Fluoride,	100 mL	Keep at	
200-20205	Tetrahydrofuran Solution (ca. 1 mol/L) 【TBAF】	500 mL	2-10 degrees C	
352-34922	Tristhulansina Tribuda (luasida	25 g	K DT	
350-34923	- Triethylamine Trihydrofluoride	100 g	Keep at RT	

Liquid chromatography-based nucleic acid separation is widely used for oligonucleotide purification and analysis. Reversed-phase chromatography is based on the principle of separation using differences in hydrophobicity and uses a support of silica gel C18. Anion-exchange chromatography is based on the principle of separation using the polyanionic nature of nucleic acids and uses a support of an anion-exchange resin (rigid polymer, etc.) that is positively charged to capture anions.³⁾

Solid-Phase Extraction column (SPE column)

Solid-phase extraction is a separation and purification technique to extract and purify the target material using a small-sized column packed with a silica gel or polymer gel support. During oligonucleotide pretreatment, the synthesized crude material is passed through a simple reversed-phase resin column (solid-phase extraction column) for contaminant removal and detritylation. This technique is suitable for pretreatment of small-volume samples.

Our Presep[®] DNA/RNA is a solid-phase extraction column suitable for oligonucleotide pretreatment. Type A uses a silica gel support and achieves high-efficiency and high-performance purification. It can be used as a sample pretreatment tool for HPLC or LC/MS analysis.

Features

- Achieves high sample load
- Can load a sample volume 3 to 5 times larger than that of commercial pretreatment columns
- Excellent deprotection efficiency
- High purification capacity
- High recovery

Fig 7. Presep® DNA/RNA Type A

Code No.	Product Name	Pkg. Size	Storage Condition	
290-36691	Presep [®] DNA/RNA Type A (85 mg/1 mL)	20 pieces		
296-36693	Synthetic scale : 0.2-0.5 µmol	50 pieces	Keep at RT	
290-36711	Presep [®] DNA/RNA Type A (255 mg/3 mL)	20 pieces	Kaan at DT	
296-36713	Synthetic scale : 1-1.5 µmol	50 pieces	Keep at RT	
292-36891	Presep® DNA/RNA Type A (1.0 g/15 mL) Synthetic scale : 4-6 µmol	10 pieces	Keep at RT	
292-36911	Presep® DNA/RNA Type A (1.7 g/25 mL) Synthetic scale : 6-10 µmol	10 pieces	Keep at RT	
299-36921	Presep® DNA/RNA Type A (5.1 g/70 mL) Synthetic scale : 20-30 μmol	10 pieces	Keep at RT	

HPLC column (ODS column)

Wakopak[®] Ultra Series C18 is a highly durable ODS column using high-purity spherical silica gel.

Code No.	Product Name	Pkg. Size	Storage Condition
235-02651	Wakopak [®] Ultra C18-5 arPhi 4.6 mm × 150 mm (W)	1 piece	Keep at RT

Eluents

A mixture of an organic solvent (acetonitrile, methanol, etc.) and a buffer (triethylamine-acetic acid, etc.) is used as an eluent for reversed-phase chromatography. As the buffer for nucleic acid separation, triethylamine-acetic acid, which is easily sublimated by freeze-drying, is generally used.³⁾

Code No.	Product Name	Pkg. Size	Storage Condition	
019-08631	Acetonitrile	1 L	Keen et DT	
015-08633	Acetonitrile	3 L	Keep at RT	
202-13131	2 mol/L Triethylamine Acetate Solution pH 7.0 【 TEAA solution 】	200 mL	Keep at RT	
085-06991		100 mL	Keen at DT	
087-06995	1,1,1,3,3,3-Hexafluoro-2-propanol	500 mL	Keep at RT	

The products listed below are buffer products for nucleic acid synthesis manufactured and distributed by Nippon Gene Co., Ltd. These products can be used as dissolution solvents for salts or nucleic acids to be added to nucleic acid solutions for ethanol precipitation. Since we provide a custom buffer manufacturing service, we can manufacture custom-made buffers according to your request.

Code No.	Product Name	Pkg. Size	Storage Condition
316-90081	3 M Sodium Acetate (pH 5.2)	100 mL	Keep at RT
314-90021		100 mL	
310-90023	TE (pH8.0) [10 mmol/L Tris-HCI (pH 8.0)1 mmol/L, EDTA (pH 8.0)]	100 mL×6	Keep at RT
316-90025		500 mL	
316-90101		100 mL	
312-90103	Distilled Water, Deionized	100 mL×6	Keep at RT
318-90105		500 mL	

Drying traps

We offer zeolite packed in non-woven fabric pouches. By wrapping zeolite in non-woven fabric, crushed zeolite powder is prevented from being mixed into the solvent. After use, zeolite can be removed from the bottle with the non-woven fabric pouch, facilitating aftertreatment. Use these products for dehydration of amidite reagents or ancillary reagents.

- > Shape: spherical
- 3 sizes: 3 g, 10 g, and 50 g
 - \Rightarrow Selectable according to container size
- > Highly airtight aluminum outer bag (degassed inside aluminum bag)
- Non-woven fabric material: composite fiber of polypropylene/polyethylene

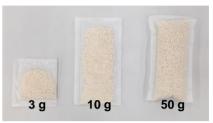


Fig 8. Zeolite pack each capacity

Code No.	Product Name	Pkg. Size	Storage Condition
261-02271	Zeolite Packs	3 g×20	
267-02273	[Zeolite, Synthetic, A-3, Beads, 1.40-2.36 mm (8 - 12mesh)] • Reference size of non-woven fabric 3 g : 60 mm×65 mm, 10 g : 120 mm×65 mm, 50 g : 120 mm×65 mm	10 g×20	Keep at RT
265-02274		50 g×10	

[Notes]

The moisture absorption capacity of synthetic zeolite is approximately 25% of its own weight. Add approximately 3 to 4 times the calculated amount of synthetic zeolite to your solvent.

Regular bottled products are also available. Please use them if non-woven fabric is not required.

Code No.	Product Name	Pkg. Size	Storage Condition
263-00575	Zeolite, Synthetic, A-3, Beads, 1.40 - 2.36 mm (8 - 12mesh)	500 g	Keep at RT
133-08645	Molecular Sieves 3A 1/8	500 g	Keep at RT
134-06095	Molecular Sieves 3A 1/16	500 g	Keep at RT

[References]

1) [2016 Edition: Current status and future prospects of global nucleic acid drug development] 2016: Sekai no kakusaniyakuhinkaihatsu no genjyo to syoraitenbou (in Japanese). Seed Planning, Inc. (2016) .

2) [Biotechnology reagents] Baiotekunoroji shiyaku (in Japanese). The Chemical Daily Co., Ltd. (1989).

3) Hirao Ichiro., Kurumizaka Hitoshi., [Principles and protocols of nucleic acid experiments that can be selected according to purpose] Mokutekibetsu de eraberu kakusanjikken no genri to purotokoru (in Japanese). Yodosha Company, Ltd. (2011).

4) Takao Inoue., : Drug Delivery System., 31-1, 10 (2016). (Japanese)

5) "Development and Applications of Nucleic Acid Therapeutics" ed. by Takeshi Wada., CMC Publishing Co., Ltd. (2016). (Japanese)

Listed products are intended for laboratory research use only, and not to be used for drug, food or human use. / Please visit FUJIFILM Wako Laboratory Chemicals site: https://labchem-wako.fujifilm.com/ / This leaflet may contain products that cannot be exported to your country due to regulations. / Bulk quote requests for some products are welcomed. Please contact us.

FUJIFILM Wako Laboratory Chemicals site https://labchem-wako.fujifilm.com

1-2, Doshomachi 3-Chome, Chuo-ku, Osaka 540-8605, Japan Tel: +81 6 6203 3741 Fax: +81 6 6203 1999 ffwk-cservise@fujifilm.com

FUJIFILM Wako Chemicals U.S.A. Corporation 1600 Bellwood Road, Richmond, VA 23237, U.S.A. Toll-Free (U.S. only): +1 877 714 1920 Tel: +1 804 271 7677 Fax: +1 804 271 7791 wkuslabchem@fujifilm.com FUJIFILM Wako Chemicals (Hong Kong) Limited FUJIFILM Wako (Guangzhou) Trading Corporation

Room 1111, 11/F, International Trade Centre, 11-19 Sha Tsui Road, Tsuen Wan, N.T., Hong Kong Tel: +852-2799-9019 Fax: +852-2799-9808 wthk.info@fujifilm.com

FUJIFILM Wako Chemicals Europe GmbH Fuggerstr 12, 41468 Neuss, Germany Tel: +49 2131 311 0 Fax: +49 2131 311 100 labchem_wkeu@fujifilm.com

Room 3003, 30/F., Dong Shan Plaza 69, Xian Lie Zhong Road, Guangzhou, 510095, China Tel: +86-20-8732-6381(Guangzhou) Tel: +86-21-6288-4751(Shanghai) Tel: +86-10-6413-6388(Beijing) wkgz.info@fujifilm.com