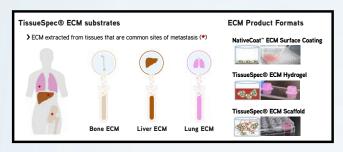
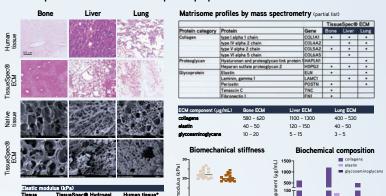


TissueSpec® Bone, Liver, and Lung ECM substrates enable disease-relevant in-vitro models of pre-metastatic tissue microenvironments

E. Aranda¹, E. Gadee¹, I. Germanguz¹, J.C. Xiong¹, N. Kissel¹, A. Nichols¹, D.P. Daly¹, D. Shvartsman², D. Deems², J.D. O'Neill¹* ² Cellaria, Wakefield, Massachusetts, USA ¹ Xylyx Bio, Brooklyn, New York, USA * Corresponding author: john@xylyxbio.com


- TISSUE-SPECIFIC ECM RECAPITULATES THE TISSUE ENVIRONMENT AT METASTATIC SITES ${ ext{ iny -}}$

Problem: In-vitro metastasis models lack pre-metastatic niche ECM components


Current in-vitro models of metastasis fail to recapitulate the critical cell-matrix interactions involving the pre-metastatic extracellular matrix (ECM) of liver, lung, and bone tissues.

Solution: TissueSpec® Bone, Liver, and Lung ECM substrates

Tissue-specific ECM have biochemical and mechanical features that enable disease-relevant in-vitro modeling of metastatic processes in bone, liver, and lung tissue microenvironments.

TissueSpec® ECM have the tissue-specific properties of human tissues

INVASION & MIGRATION ASSAYS

Migration assay

Invasion assay

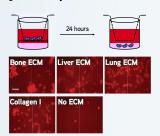
270

220

120

70

20


-30

"-se rum"

TissueSpec® Lung

field avg)

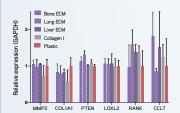
Number of cells (10x 170

- > Methods: TissueSpec® Bone, Liver, or Lung ECM Hydrogels, collagen I gel, or plastic (no ECM) were added to the bottom of wells as chemoattractants. Lung adenocarcinoma cells (Jacket Cellaria) were then cultured on transwell inserts with 8 µm pores. After 24 hours, migration was assessed.
- > Results: Adenocarcinoma cells showed greater migration toward ECM substrates, and organized differently in each tissuespecific ECM. Notably, clusters formed in TissueSpec® Bone ECM. Scale bar: 100 µm

> Methods: Lung adenocarcinoma cells (A549) were cultured on transwell inserts coated with TissueSpec® Lung ECM Hydrogel or Matrigel®. Media with 10% serum was added to lower compartments. and media without serum (or with serum as control) was added to upper compartments. After 24 hours, invasion was quantified by crystal violet stain.

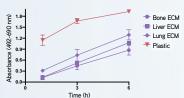
> Results: Lung adenocarcinoma cells cultured in TissueSpec® Lung ECM Hydrogel exhibited significantly greater motility & invasiveness than cells cultured in Matrigel®. *p<0.05.

Metastasis-related gene expression


"+ se rum"

control

"-se rum"


control

Matrigel®

- > Methods: Metastatic breast cancer cells (BT-549) were cultured on NativeCoat™ ECM, collagen, or plastic for 24 hours. Gene expression was normalized to BT-549 cells cultured on plastic.
- > Results: Cells cultured NativeCoat™ Bone, Liver, and Lung ECM expressed higher levels of RANK mRNA. Cells cultured on NativeCoat™ Bone ECM expressed higher levels of CCL7 mRNA.

Proliferation in pre-metastatic ECM

- > Methods: Breast cancer cells (BT-549) were cultured in Bone, Liver, or Lung ECM Hydrogels, and on plastic for 24 hours. Proliferation was assessed by XTT assay.
- > Results: Breast cancer cells cultured in TissueSpec® ECM Hydrogels had different rates of proliferation. Cells cultured in Lung ECM showed higher activity than cells in Bone and Liver ECM Hydrogels.

3D APPLICATIONS

3D models of metastases

ECM remodeling

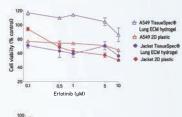
> Methods: Jacket cells were labeled with CellTracker Red CMTPX and cultured in 3D TissueSpec® Lung ECM Hydrogel and on 2D plastic (no ECM). Scale: 100 μm

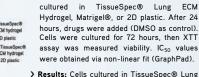
Bone

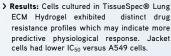
Liver

Lung

ECM Lung


> Results: 3D TissueSpec® Lung ECM enables cell-cell contact and cell-ECM interactions and show 3D aggregations of cancer cells.




- > Methods: Rheometric testing was conducted on TissueSpec® Bone, Liver, and Lung ECM Hydrogels with and without 5x105 Jacket lung adenocarcinoma cells after 48 hours.
- > Results: Bone and liver ECM hydrogels had reduced elastic moduli, whereas modulus of lung ECM did not change.

> Methods: A549 cells and Jacket cells were

Drug response assays

iity (% contr	60	1	1	I			 TissueSpec® L ECM hydrogel 2D plastic
Cell vist	40				· A	4	Lo pane
	20	0.3	0.5	i	5	10	
			Etopo	side (µM)			

Substrate	A549	Jacket	
TissueSpec® Lung ECM	134.2	7.5	
Plastic (no ECM)	36.4	5.2	
Matrigel®	57.5	8.7	
Etoposide	IC50	ο (μ M)	
Substrate	A549	Jacket	
TissueSpec® Lung ECM	16.6	3.7	
rissueopece Luiig Low	10.0		
Plastic (no ECM)	40.3	4.4	

Physiologically relevant

TissueSpec® Bone, Liver and Lung ECM Hydrogels contain the full milieu of proteins & growth factors present in pre-metastatic niche ECM of human tissues.

More accurate, predictive results

TissueSpec® ECM Hydrogels provide ideal conditions for maintaining cell phenotype, leading to more accurate results compared to other substrates.

Standardized experiments

TissueSpec® ECM Hydrogels demonstrate consistent composition profiles across different lots, resulting in reproducible studies.

Clinically translatable

TissueSpec® ECM Hydrogels facilitate downstream clinical translation because they contain tissue-specific ECM from medical grade swine tissues.

